

Comparative Performance of GPU, SIMD and

OpenMP Systems for Raw Template Matching in
Computer Vision

Juan Mendez

Departamento de Informática y
Sistemas. Universidad de Las

Palmas de Gran Canaria
 35017, Las Palmas, Spain

jmendez@dis.ulpgc.es

Javier Lorenzo

SIANI. Universidad de Las
Palmas de Gran Canaria.
35017, Las Palmas, Spain

jlorenzo@iusiani.ulpgc.es

Modesto Castrillon

SIANI, Universidad de Las
Palmas de Gran Canaria.
35017, Las Palmas, Spain

mcastrillon@iusiani.ulpgc.es

ABSTRACT
Template matching is a traditional technique of Computer Vision whose advantages and disadvantages are
known. However, advances in computer hardware allow computing it effectively with the use of SIMD
instruction set, GPUs or multi-core systems. The computation of that low-level primitive in sub millisecond scale
would improve high theoretical methods if they are used with high efficient primitives. This paper presents the
comparative results of basic template matching by using SIMD instructions, multi-core systems and multi-GPU
implementations. The results of this study will show that the high-specialized instruction in modern releases of
SIMD and the use of multi-core systems outperforms the implementations based on GPUs for small mask size
due to memory transfer cost. However, for big mask size GPU and SIMD systems have similar performance.

Keywords
Computer Vision, Template Matching, Parallel Computing, GPU, Multi-Core Systems.

1. INTRODUCTION
Template Matching is a Computer Vision procedure
focused on the detection of local features in a image
that seems or resembles similar properties than a
small part of the image or mask. This is a general
definition and many different approaches implement
the concept by using different paradigms. The main
drawback of template matching is that it implies a
"wasteful" exploring of the image for searching a
local area very similar to the mask. This requires the
sliding of the mask across the entire picture and the
computation of some measure of similarity or
distance for each position.

Computer Vision applications have two opposite
constraints. The first is related to the randomness of
the data that requires the use of higher-level
theoretical procedures. These methods allow robust

procedures that deal efficiently with the enormous
variability of the data and provide stable results. The
second constraint is related to the computational
efficiency that tends to carry out real-time
performance to fit the application needs and can be
useful in real world problems. The progresses in
Computer Vision deal to advances in both directions.
The equilibrium between both viewpoints determines
the most useful procedures for a defined state of the
advances in the computer technology and in
theoretical methods.

The evolution of computer hardware can revalue
some traditional and simple procedures because they
will be computed faster than in older
implementations. These fast and simple procedures
can be used as basic results, which are the first level
of intermediate results, in more elaborated and
complex procedures. That is, they can be considered
primitives rather than complete procedures. Raw
Template Matching is a traditional Computer Vision
technique with advantages and drawbacks, but it can
be computed very efficiently in modern computer
hardware as Graphics Processor Unit (GPU) and
Single Instruction Multiple Data (SIMD) arithmetic
units in multi-Core systems.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Modern computer ranging from desktop to rack
servers have multiple cores as well as some GPU in
standard hardware configuration. Also many
processors, such as the Intel/AMD series, include
vector units that allow advanced SIMD instructions.
Thus, no additional cost is needed in order to have
high performance computer hardware. However,
these units, that are normally unused, are difficult to
integrate in standard programming code unless no
special programming libraries are used. That is a very
common tendency in many branches of computing
where hardware advances are faster than
programming techniques, or programming practices.
The introduction of special libraries such as OpenCV
[Bra08a] provides to the user the advantage of high
computer performance and hides its complexity. But
OpenCV library is a bit conservative and does not
take advantage of all the features that the hardware
can provide. The best performance using SIMD is
achieved when the assembler code is used.
Developing a complete application in assembler level
is not a good idea, but coding only small pieces of
high efficient primitives can be a good option in
some special cases. Although programming GPU is
difficult, the use of this specialized hardware is
useful only if their programming is hidden in
specialized libraries for small but high efficient
pieces of the software used for Computer Vision.

The main idea of advanced tracking systems such as
Lukas-Kanade procedure [Luk81a] is based on the
assumption that small changes in image motion such
as the brightness constancy and spatial coherence of
small areas in the image motion can be detected; that
is, for short time intervals, small masks can be used
to detect the motion of real world objects. The
similarity between mask and local image area can be
computed by using different features and
classification strategies and methods, but the one
based on the similarity or distance between the raw
data at pixel level is the simplest of all.

According to Brunelli [Bru09a], the main drawback
of Template Matching is its high computational cost,
which has two distinct sources. The first one is the
necessity of using multiple templates to capture the
variability exhibited by the appearance of complex
objects. The second one is related to the size of
templates: the higher the resolution, the heavier the
computational requirements. Raw template matching
is much more simple if compared with advanced
matching that incorporates geometric invariance
[Ull04a] [Kin07a], of feature characterization
rotation invariant of mask based on moments of Hu
and Zernike [Teh88a]. In the case of advances
tracking applications, template matching must be
used along with higher level procedures such as

Kalman and Particle filter [For02a]. Template
Matching is also a basic tool used in video encoding,
where the correspondence points between successive
frames in video image, eg. in MPEG video
compression, implies the detection of image block of
16x16 pixels in previous frames [Sha01a]. However,
in video compression the required matching is carried
out in a narrow area bounding the block.

This paper presents a comparative study of
implementation of raw template matching based on
modern technologies using GPU and SIMD
architectures that allows the computation of template
matching of small masks in few milliseconds. The
basic results of raw template matching are presented
as well as its efficient implementation in the more
modern release of SIMD instruction set. The details
of the implementation in GPU are also presented, and
finally the comparative results of both approaches by
using multiple cores with OpenMP [Cha08a] parallel
programming.

2. RAW TEMPLATE MATCHING
The easiest way to achieve raw template matching is
by using a similarity or distance measure between a
local area of the image and a mask or template. If the
matching is based on a distance measure, it is
necessary to find the minimum or minima. A
widespread used distance measure in different
branches of Mathematics and Computer Science is
the one based on a vector norm, e.g. as the based on
the Minkowski metric [Bru09a] [Har01a]. The
matching result R can be computed from the image
data D and the template or mask M as:

ࡾ ൌ צൣ ݔሺࡰ ,ݑ ݕ ሻݒ െࡹሺݑ, ሻݒ ൧צ

where צ ܣ norm. Examples of very usedܮ is theצ
norms in Mathematics and Computer Vision are: ܮଵ,
 ஶ. The definition of template matching usingܮ ଶ andܮ
multichannel images and masks in these cases is the
following:

ܴଵሺݔ, ሻݕ ൌ|ܦሺݔ ,ݑ ݕ ሻݒ െ ,ݑሺܯ |ሻݒ
௨,௩

ܴଶሺݔ, ሻݕ ൌ|ܦሺݔ ,ݑ ݕ ሻݒ െ ,ݑሺܯ ሻ|ଶݒ

௨,௩

ܴஶሺݔ, ሻݕ ൌ max
,௨,௩

ݔሺܦ| ,ݑ ݕ ሻݒ െܯሺݑ, |ሻݒ

The ܮଶ, norm which generates the template matching
ܴଶ, is used by OpenCV Library [Bra08a], although it
has not the lowest computational cost. OpenCV is
originally based on performance primitives of
Intel/AMD processors, but these systems are better
suited to compute efficiently the ܮଵ norm, which is
based on the computation of Sum of Absolute

Differences (SAD). Also NVIDIA GPUs have basic
support for computing the SAD primitive. The SAD
for two arrays is defined as: ܵܦܣሺ,ሻ ൌ ∑|ܣ െ
 ଵ is no advantageous inܮ |. Although the use ofܤ
general purpose programming, some special
hardware makes it the best choice. However,
nowadays the special SIMD hardware of Intel
processors is of such a common and widely use that
we can call it as general purpose hardware.

Instead of using a coordinate system placed on the
center of the template mask, we will use upper-left
corner centered coordinates. It is more advantageous
to deal with memory alignment, because it plays a
main role in efficient memory accesses. The real
position of the detection of the mask can be obtained
after the minimum detection by using a simple offset
to the mask center. We will use the offset evaluation
of the match for a mask of dimension ܵ௫ ൈ ܵ௬defined
as:

ܴሺݔ, ሻݕ ൌ ݔሺܦ| ,ݑ ݕ ሻݒ െ ,ݑሺܯ |ሻݒ

ௌିଵ

௩ୀ

ௌೣିଵ

௨ୀ

Multi-channel template matching, e.g. in RGB
images, can be obtained simply by adding the results
obtained in the previous equation that was applied in
every image channel and mask. For a ௫ܰ ൈ ௬ܰ image,
the border band, which is usually located bounding
the image, is moved to the right and low of the
image. The right null band is ܵ௫ െ 1 width and low
band is ܵ௬ െ 1 high. In the previous Equation the
ሺݔ, ݔ :ሻ values run in the intervalsݕ א ሾ0, ௫ܰ െ ܵ௫
1ሿ and ݕ א ሾ0, ௬ܰ െ ܵ௬ 1ሿ. Usually, the border
band is set to null value, but to avoid any problem
with the minimum computation we decide to set it to
the highest numeric positive value in its internal
representation. After the local detection of the
minimum matching value, its location must be offset
by ሺܵ_2/ݔ, 2ሻ. Template matching in 2D has/ݕ_ܵ
advantages related to the data alignment, and it also
can be computed by row 1D oriented matching:

ܴሺݔ, ሻݕ ൌ ݔ௬ା௩ሺܦ| ሻݑ െ |ሻݑ௩ሺܯ

ௌିଵ

௩ୀ

ௌೣିଵ

௨ୀ

That can be computed by using the following general
1D template matching:

ሻݔሺܤ ൌ ݔሺܣ| ሻݑ െ |ሻݑሺܥ

ௌିଵ

௨ୀ

The use of Region of Interest (ROI) reduces
significantly the computational cost because the
template search can be reduced to a fraction of the
image area. The ROI usage for tracking requires the
implementation of a strategy for updating the ROI
according to the detected trajectory by using a

predictive filter such as the one based on Kalman or
Particle Filters. In this paper we have computed the
worst case, when the maximal ROI extends to the
entire image. This option allows us to obtain an
upper bound of the tracking computational time.

The two main problems involved in the computation
of template matching in 2D and 1D are arithmetic
and memory access. The arithmetic is concerning to
the computation of SAD, which is not cheap if no
special hardware is available. Memory access is a
less evident problem, but it is more important in
modern computers because their performance is
mainly related to the pattern of memory access. The
sliding of the mask across the entire image requires
that all the different memory alignments patterns
must be used. The sliding ݑ value between ܤሺݔሻ and
ݔሺܣ ሻ is the cause of many of the lowݑ
performance issues in computer applications because
it is very important in memory access efficiency.

3. SIMD-BASED TEMPLATE
MATCHING
The efficient implementation of template matching in
modern computer architectures requires a revision of
some specialized instructions of the machine code of
some popular microprocessors. Unfortunately, those
instructions are not used by the compilers to translate
the user code written in high level languages as
C/C++ to machine code. This implies that the user
must code the parts of the software dealing with the
specialized instructions using assembly language or
inline embedded assembly. In this section only some
guidelines of the specialized instructions are shown
with the aim of being useful for researchers and
developers in Computer Vision.

Early versions of SIMD in Intel/AMD processors
incorporate a SAD instruction called psadbw in the
first SSE (Streaming SIMD Extension) release of the
MMX (Multi Media eXtension) instruction set. It
uses the MMX registers of 64 bits, allowing
computing the SAD for 8 bits unsigned integer data.
This instruction allows improving the arithmetic part
of the array matching but does not solve the problems
related to the sliding of the mask array across the
data array. Multiple unaligned data read were needed
to perform and achieve the whole matching.

A recent SSE extension, that use 128 bit registers,
has included the mpsadbw instruction [Int09a] that
solves this problem by including in-hardware sliding
computation, which avoids that the user must design
a code with unaligned data load. This improvement
introduced in SIMD release SSE4.1 allows higher

performance, but at the time of this study, it is not
included yet in all computer vision libraries, e.g.
OpenCV. This instruction computes multiple and
sliding SAD for 4 bytes masks including an
immediate additional argument (imm8) that controls
the selection of the group of 4 bytes defining the
mask and also controlling the sliding option. The
mpsadbw instruction requires three arguments: the
source register containing 16 byte mask data, s(0-15),
the result register that initially contains 16 byte data
from an image row, d(0-15), and finally one byte
register, imm8, to control the instruction mode. The
result is obtained as 8 unsigned short array r(0-7).

This instruction is extremely important for modern
HDTV codecs, and allows an 8x8 block difference
to be computed in fewer than seven cycles [Kua07a],
but also is very useful in general template matching
of small mask on the whole image. This instruction
implements the computation of the SAD for 4
unsigned char integer values and the in-hardware
computation of the sliding of the 4 bytes across the
data register. If ݅݉݉8ሺ2ሻ ൌ ܽ א ሼ0,1ሽ and
݅݉݉8ሺ0 െ 1ሻ ൌ ܾ א ሼ0,1,2,3ሽ, it computes for
݅ ൌ 0,… ,7

ሺ4ܽݎ ݅ሻ ൌ|݀ሺ4ܽ ݅ ݆ሻ െ ሺ4ܾݏ ݆ሻ|
ଷ

ୀ

Computing the whole sliding of a mask across a data
array will require a more complex arrangement.
Therefore, to compute a full matching of a data array
with a mask of suitable size multiple of 4 bytes, we
have designed a computational arrangement, which is
shown in Figure 1, as an useful chart that allows an
easy implementation for Computer Vision developers
and researchers. In this chart, Data and Result are the
arrays involved in a general 1D matching. The first
array is 8 bits unsigned integer and the second array
16 bits unsigned integers, also it is used the 8 bit
unsigned int Mask array, whose length is multiple of
4. In Intel architecture the SSE instructions for
loading and storing data are penalized if the memory
reference is not aligned to 16 bytes. The goal of the
arrangement shown in the Figure 1 is the
computation of Result(0-7) and Result(8-15) for

different mask sizes. Data are read from memory in
16 bytes block such as the CPU can read Data(0-15)
and Data(16-31). However, it can be read Data(8-23)
in unaligned way by incurring in efficiency penalties.
To avoid that, it can be obtained Data(8-23) by using
register instructions from the aligned Data(0-15) and
Data(16-31), which can be read without penalties.
Data contained in the first row are directly read and
the contained in the second row are obtained from the
previous by using register operations.

Column containing Result(0-7) defines the
intermediate results that must be added to get the
result and from which they are obtained. For
instance, to compute Result(0-7) by using the smaller
mask of 4, we must compute by using the imm8
value of 000 in the Data(0-15) according to the
description of the instruction. When we want the
same result but for a mask size of 8, we must obtain
the previous result (using 000 in Data(0-15)) and add
this to the intermediate result by using 010 applied to
Data(8-23). For each row related to a mask size,
intermediate results are organized form right to left
and successively computed from Data(0-15), Data(8-
23), Data(16-31), Data(24-39) and Data(32-47). Each
cell in the sub-rows corresponds to each mask size
when it is computed by using the defined {imm8}
datum. Although the arrangement can be extended to
bigger masks of size 4 ൈ ܰ, we only have included
the cases from 4 to 32.

4. TEMPLATE MATCHING IN GPU
A GPU has many processors or cores that can be
suitably arranged to fit better for a specific problem.
The advantage of GPUs is the massive number of
cores, e.g. 2x240 in a NVIDIA GTX 295, but its
drawback is the access to memory of such big
number of cores. The memory is organized in
different types: global, constant, texture and shared,
but each type is accessed by using a single port,
therefore the serial part and the bottleneck of the
algorithms programmed in GPU is the memory
access. According the Amdahl's law this is the factor
that limits the efficiency of this massive parallel
system.

The main decision in the GPU programming is the
design criterion of how memory will be used. We
have decided to place the mask data in constant
memory and the image and the result data in global
memory. The image is constant in the algorithm but
it does not fit in the small constant memory of the
GPU. The CUDA programming methodology
[Nvi09a] allows arranging the processors as a grid of
threads. In our problem, the grid of threads is
configured by assigning a thread to each result pixel
at ሺݔ, ሻ excluding the border band; that is, eachݕ
thread is involved in the computation of a ܴሺݔ, ሻݕ
result. To reduce the negative effects of memory
access, the mask data are placed in constant memory
because this type of memory is cached and is smaller
in size than the mask data. Also, we take advantage
of broadcast access to that memory type because for
ሺݑ, ሻ values of the mask indexes all the threadsݒ
access to the same ܯሺݑ, ሻ, which takes advantage ofݒ
the broadcast access to constant memory.

In the developed code, the access to global memory
is coalescent but unaligned due to the sliding. This
would require the access to two consecutive data
block in the same half ward, depending on the sliding
value of ݒ. To avoid the decreasing in performance
of unaligned access, NVIDIA documentation
[Nvi09a] suggests the use of texture memory instead
of global memory, but we have not experimented any
increasing in the performance when allocating the
image data in texture memory and the mask in
constant memory. At this point, the provided results
are the related to the data ࡰ being placed in global
memory, with coalescent but unaligned access, and
the mask ࡹ being in constant memory with cached
and broadcast access. To achieve the computation of

the SAD, the unsigned integer version of the CUDA
function sad(a,b,c) was used, where a becomes the
value of the sliding image in global memory, b the
value of the mask in constant memory and c the
value of the serialized computation of the result.

To increase the efficiency in GPU, streamed calls to
memory transfer and kernel launches have been used
by splitting the image in several areas, non
overlapping in result data and overlapping in image
data. The interleaving between data transfer and
kernel computation allows hiding the time used in
data transfer between device and host. For this
streamed asynchronous data transfer, the optional
pinned memory allocation was used. The last
included improvement is the use of this methodology
to feed data and kernel launches in the two GPU
contained in the same graphic card.

5. RESULTS
To test the implementations of raw template
matching, images of 640 ൈ 480 pixel have been
used. Mask sizes range from 4 ൈ 4 to 32 ൈ 32. Both
image and mask are single-channel with a pixel data
of 8 bit unsigned int. The test computer is a Core2
Quad Q8300 with 4 GB of RAM memory and one
NVIDIA GTX 295 graphic card. The Operating
System is Windows XP and the code has been
written in C++ in Visual Studio. Computational times
are obtained by using performance counters of
Windows, the reported values are the average on one
hundred runs. Table 1 contains the results for four
different implementations. The first one is C plain
with low performance, but that is used as the baseline
to provide the speedup for higher performance

Figure 1. Computational arrangement for fast pattern matching. Data
inboxes is the imm8 value

implementations. The second implementation uses
SIMD instruction in the 1D matching in which is
based in the 2D. Also, for these two implementations
the use of multiple cores is included by using
OpenMP [Cha08a] parallelism. The 2D matching is
implemented by row oriented 1D matching primitive,
an omp parallel for directive of OpenMP is used for
the row loop. The static schedule strategy is used, so
the computation of rows is assigned to each core at
the thread forking. Four threads are used for this four
core system. The speedup (Column Sp) reported is
the SIMD implementation with OpenMP in relation
to the serial C plain one. Core based parallelism is
more effective when 32 ൈ 32 mask is used because
the latencies of the threads forking are less relevant
in bigger tasks than in the lowest associated to the
small 4 ൈ 4 mask due to the effectiveness of threads
level parallelism is greatly dependent on the
computational grain size. A remarkable speedup
value of 184 is achieved for 16 ൈ 16 mask when the
four core of the system are used and also their high
specialized SIMD vector units.

Table 1. Time in msec. for Template Matching in
640x480 images. C plain (Cp), SIMD and Speedup

(Sp) for the 4 Cores case are included.

Table 2 contains the results for the implementations
using one GPU. It contains the host to device (HtoD)
data transfer, that in this case means, the transfer of
mask from host memory to constant memory and the
image transfer to global memory. This table also
includes the kernel computation and finally the
device to host (DtoH) transfer of the result to host
memory. The result is coded as unsigned int which is
better for the SAD computation but increases the data
transfer time. However, this decision is not relevant
in bigger mask sizes. Speedup columns are related to
the kernel part (Sp1) or the total time (Sp2) over the
C plain simple case. Figure 2 shows the graphical
representation of these values. In the 4 ൈ 4 case, data
transfer is the critical subtask, while for the 32 ൈ 32
case the kernel computation is highly more
significant than the data transfer.

The final test that has been carried out includes other
computational advantages of the GPU. The first one
is the use of the second GPU included in the GTX
295 graphic card by means of splitting the whole
image in two parts and by loading each part to each
GPU. This methodology is extended by splitting the
image in many parts and transferring each one to the
GPUs in different threads context. This is
implemented by thread forking in OpenMP in a
number of threads defined by the user and using the
cudaSetDevice function to select the device. Pinned
memory is used to accomplish streamed
asynchronous memory transfer and kernel launches.
Table 3 contains the results for several mask size,
and Figure 3 illustrate the results for 32 ൈ 32 mask
by using synchronous and asynchronous memory
transfer. The 2 thread case, which uses a task in each
GPU, is the best result followed by the 4 threads,
which includes two tasks in each CPU. The
asynchronous case that hides part of the memory
transfer cost is the best case, but it cannot overtake
the SIMD implementation.

Table 2. Results in msec. for Template Matching
in one GPU. Speedup 1 (Sp1) is Kernel time and
Speedup 2 (Sp2) is Total time, both related to 1

Core C plain case.

6. CONCLUSIONS
Modern computer hardware allows the computation
of raw template matching in few milliseconds for
small mask sizes. The use of ROI can reduce this
computational cost to sub milliseconds scale. This
fact is an opportunity to revalorize the developing of
template matching applications. The use of many
cores or many GPUs are different options to
consider, but nowadays, the many-core approach,
which includes specialized vector SIMD instructions,
is more computational efficient because it is high
specialized in SAD arithmetic and in-hardware
sliding of mask across data array.

Technological improvements are in the line of
increasing the number of cores in host. This trend is
not well suited for small masks because they do not
use effectively the OpenMP parallelism, but in bigger
masks they can greatly increase the performance of

 1 Core/ 1 Thread 4 Cores / 4 Threads

Mask Cp SIMD Cp SIMD Sp

4x4 11.1 0.7 2.7 0.6 18.5

8x8 33.1 0.8 8.8 0.2 165.5

12x12 66.4 2.4 27.2 0.9 73.8

16x16 110.6 3.4 29.0 0.6 184.3

24x24 231.3 6.5 60.0 1.3 177.9

32x32 388.6 10.5 101.0 2.3 168.9

Mask HtoD Kernel DtoH Total Sp1 Sp2

4x4 0.4 0.3 1.0 1.7 37 6

8x8 0.4 0.7 1.0 2.1 47 16

12x12 0.4 1.5 1.0 2.9 44 23

16x16 0.4 2.7 1.0 4.1 41 27

24x24 0.4 5.8 1.0 7.2 40 32

32x32 0.4 10.1 1.0 11.5 38 34

template matching procedures. The evolution of GPU
architectures, e.g. the new NVIDIA Fermi
architecture, will introduce full global memory
cached access that can improve the kernel part of the
GPU procedure as well as an increase in the number
of involves cores. However, this can be improved
only in the performance of big mask sizes whereas in
smaller ones it will depend on the increase of the
bandwidth of memory transfer between the host and
the graphic card.

 4x4 16x16 32x32

Th S A S A S A

1 2.6 2.3 5.1 4.7 12.5 12.1

2 2.4 2.1 3.7 3.3 7.4 7.1

3 5.8 3.6 7.5 5.1 12.6 10.4

4 5.9 3.7 7.3 4.8 11.1 8.7

5 6.2 4.7 9.3 6.0 14.0 10.7

6 6.4 5.0 7.8 6.0 13.8 10.3

7 7.8 5.9 9.5 7.3 14.2 12.0

8 7.9 6.2 9.4 7.3 13.7 11.3

Table 3. Results in msec. for 2 GPUs and OpenMP
using different threads number (Th) from 1 to 8.
The Sync (S) and Async (A) cases are included for

several mask sizes.

7. REFERENCES
[Bra08a] Bradski, G. and Kaehler, A, Learning

OpenCV, Computer Vision with the OpenCV
Library, O’Reilly, 2008.

[Bru09a] Brunelli, R, Template Matching Techniques
in Computer Vision, Theory and Practice, John
Wiley and Sons Ltd, 2009.

[Cha08a] Chapman B., Jost, G and van der Pas, R.,
Using OpenMP Portable Shared Memory Parallel
Programming, MIT Press, 2008

[For02a] Forsyth, D.A., and Ponce, J., Computer
Vision: A Modern Approach, Prentice Hall, 2002.

[Har01a] Hart, P.E., Duda, R.O., Stork D.G., Pattern
Classification, John Wiley and Sons, 2001.

 [Int09a] Intel 64 and IA-32 Architectures Software
Developer’s Manual, Vols 2A-2B, Intel
Corporation, 2009

[Kin07a] Kim, H.Y, and Araujo S.A., Grayscale
template-matching invariant to rotation, scale,
translation, brightness and contrast, IEEE Pacific-
Rim Symposium on Image and Video
Technology, Lecture Notes in Computer Science,
4872:100-113, 2007.

[Kua07a] Kuah, K, Motion stimation with Intel
streaming SIMD extension 4. Technical report,
Intel Software Solution Group, 2007

[Luk81a] Lukas B.D. and Kanade, T., An iterative
image registration technique with application to
stereo vision, Proceeding of the 1981 DARPA
Image Understanding Workshop, pp 121-130,
1981.

[Nvi09a] NVIDIA CUDA, Programming Guide,
Version 2.3.1, NVIDIA Corporation, 2009.

 [Sha01a] Shapiro, L., and Stockman G., Computer
Vision, Prentice Hall, 2001.

[Teh88a] The, C.H., and Chin, R.T., On image
analysis by the method of moments, IEEE Trans.
on Pattern Analysis and Machine Intelligence,
10(4):496-513, 1988.

[Ull04a] Ullah, F., and Kaneko, S., Using orientation
codes for rotation-invariant template matching,
Pattern Recognition, 37:201-209, 2004.

Figure 2. Kernel and Data transfer in GPU,
memory copy from host to device (HtoD), device
to host (DtoH) and kenel matching

Figure 3. Total time for 2 GPUs and 32x32 mask
matching. Asynchronous memory transfer was
used with interleave between data transfer and
kernel launches.

