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ABSTRACT 
Template matching is a traditional technique of Computer Vision whose advantages and disadvantages are 
known. However, advances in computer hardware allow computing it effectively with the use of SIMD 
instruction set, GPUs or multi-core systems. The computation of that low-level primitive in sub millisecond scale 
would improve high theoretical methods if they are used with high efficient primitives. This paper presents the 
comparative results of basic template matching by using SIMD instructions, multi-core systems and multi-GPU 
implementations. The results of this study will show that the high-specialized instruction in modern releases of 
SIMD and the use of multi-core systems outperforms the implementations based on GPUs for small mask size 
due to memory transfer cost. However, for big mask size GPU and SIMD systems have similar performance.  

Keywords 
Computer Vision, Template Matching, Parallel Computing, GPU, Multi-Core Systems. 

1. INTRODUCTION 
Template Matching is a Computer Vision procedure 
focused on the detection of local features in a image 
that seems or resembles similar properties than a 
small part of the image or mask. This is a general 
definition and many different approaches implement 
the concept by using different paradigms. The main 
drawback of template matching is that it implies a 
"wasteful" exploring of the image for searching a 
local area very similar to the mask. This requires the 
sliding of the mask across the entire picture and the 
computation of some measure of similarity or 
distance for each position. 

 

Computer Vision applications have two opposite 
constraints.  The first is related to the randomness of 
the data that requires the use of higher-level 
theoretical procedures. These methods allow robust 

procedures that deal efficiently with the enormous 
variability of the data and provide stable results. The 
second constraint is related to the computational 
efficiency that tends to carry out real-time 
performance to fit the application needs and can be 
useful in real world problems. The progresses in 
Computer Vision deal to advances in both directions. 
The equilibrium between both viewpoints determines 
the most useful procedures for a defined state of the 
advances in the computer technology and in 
theoretical methods. 

 

The evolution of computer hardware can revalue 
some traditional and simple procedures because they 
will be computed faster than in older 
implementations. These fast and simple procedures 
can be used as basic results, which are the first level 
of intermediate results, in more elaborated and 
complex procedures. That is, they can be considered 
primitives rather than complete procedures. Raw 
Template Matching is a traditional Computer Vision 
technique with advantages and drawbacks, but it can 
be computed very efficiently in modern computer 
hardware as Graphics Processor Unit (GPU) and 
Single Instruction Multiple Data (SIMD) arithmetic 
units in multi-Core systems. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 



Modern computer ranging from desktop to rack 
servers have multiple cores as well as some GPU in 
standard hardware configuration. Also many 
processors, such as the Intel/AMD series, include 
vector units that allow advanced SIMD instructions. 
Thus, no additional cost is needed in order to have 
high performance computer hardware. However, 
these units, that are normally unused, are difficult to 
integrate in standard programming code unless no 
special programming libraries are used. That is a very 
common tendency in many branches of computing 
where hardware advances are faster than 
programming techniques, or programming practices. 
The introduction of special libraries such as OpenCV 
[Bra08a] provides to the user the advantage of high 
computer performance and hides its complexity. But 
OpenCV library is a bit conservative and does not 
take advantage of all the features that the hardware 
can provide. The best performance using SIMD is 
achieved when the assembler code is used. 
Developing a complete application in assembler level 
is not a good idea, but coding only small pieces of 
high efficient primitives can be a good option in 
some special cases. Although programming GPU is 
difficult, the use of this specialized hardware is 
useful only if their programming is hidden in 
specialized libraries for small but high efficient 
pieces of the software used for Computer Vision. 

 

The main idea of advanced tracking systems such as 
Lukas-Kanade procedure [Luk81a] is based on the 
assumption that small changes in image motion such 
as the brightness constancy and spatial coherence of 
small areas in the image motion can be detected; that 
is, for short time intervals, small masks can be used 
to detect the motion of real world objects. The 
similarity between mask and local image area can be 
computed by using different features and 
classification strategies and methods, but the one 
based on the similarity or distance between the raw 
data at pixel level is the simplest of all. 

 

According to Brunelli [Bru09a], the main drawback 
of Template Matching is its high computational cost, 
which has two distinct sources. The first one is the 
necessity of using multiple templates to capture the 
variability exhibited by the appearance of complex 
objects. The second one is related to the size of 
templates: the higher the resolution, the heavier the 
computational requirements. Raw template matching 
is much more simple if compared with advanced 
matching that incorporates geometric invariance 
[Ull04a] [Kin07a], of feature characterization 
rotation invariant of mask based on moments of Hu 
and Zernike [Teh88a]. In the case of advances 
tracking applications, template matching must be 
used along with higher level procedures such as 

Kalman and Particle filter [For02a]. Template 
Matching is also a basic tool used in video encoding, 
where the correspondence points between successive 
frames in video image, eg. in MPEG video 
compression, implies the detection of image block of 
16x16 pixels in previous frames [Sha01a]. However, 
in video compression the required matching is carried 
out in a narrow area bounding the block. 

 

This paper presents a comparative study of 
implementation of raw template matching based on 
modern technologies using GPU and SIMD 
architectures that allows the computation of template 
matching of small masks in few milliseconds. The 
basic results of raw template matching are presented 
as well as its efficient implementation in the more 
modern release of SIMD instruction set. The details 
of the implementation in GPU are also presented, and 
finally the comparative results of both approaches by 
using multiple cores with OpenMP [Cha08a] parallel 
programming. 

 

2. RAW TEMPLATE MATCHING 
The easiest way to achieve raw template matching is 
by using a similarity or distance measure between a 
local area of the image and a mask or template. If the 
matching is based on a distance measure, it is 
necessary to find the minimum or minima. A 
widespread used distance measure in different 
branches of Mathematics and Computer Science is 
the one based on a vector norm, e.g. as the based on 
the Minkowski metric [Bru09a] [Har01a]. The 
matching result R can be computed from the image 
data D and the template or mask M as:  

ࡾ ൌ צൣ ݔሺࡰ  ,ݑ ݕ  ሻݒ െࡹሺݑ, ሻݒ ൧צ

 

where צ ܣ   norm. Examples of very usedܮ  is theצ
norms in Mathematics and Computer Vision are: ܮଵ, 
 ஶ. The definition of template matching usingܮ ଶ andܮ
multichannel images and masks in these cases is the 
following: 

ܴଵሺݔ, ሻݕ ൌ|ܦሺݔ  ,ݑ ݕ  ሻݒ െ ,ݑሺܯ |ሻݒ
௨,௩

 

ܴଶሺݔ, ሻݕ ൌ|ܦሺݔ  ,ݑ ݕ  ሻݒ െ ,ݑሺܯ ሻ|ଶݒ

௨,௩

 

ܴஶሺݔ, ሻݕ ൌ max
,௨,௩

ݔሺܦ|  ,ݑ ݕ  ሻݒ െܯሺݑ,  |ሻݒ

The ܮଶ, norm which generates the template matching 
ܴଶ, is used by OpenCV Library [Bra08a], although it 
has not the lowest computational cost. OpenCV is 
originally based on performance primitives of 
Intel/AMD processors, but these systems are better 
suited to compute efficiently the ܮଵ norm, which is 
based on the computation of  Sum of Absolute 



Differences (SAD). Also NVIDIA GPUs have basic 
support for computing the SAD primitive. The SAD 
for two arrays is defined as: ܵܦܣሺ,ሻ ൌ ∑|ܣ െ
 ଵ is no advantageous inܮ |. Although the use ofܤ
general purpose programming, some special 
hardware makes it the best choice. However, 
nowadays the special SIMD hardware of Intel 
processors is of such a common and widely use that 
we can call it as general purpose hardware.  

Instead of using a coordinate system placed on the 
center of the template mask, we will use upper-left 
corner centered coordinates. It is more advantageous 
to deal with memory alignment, because it plays a 
main role in efficient memory accesses. The real 
position of the detection of the mask can be obtained 
after the minimum detection by using a simple offset 
to the mask center. We will use the offset evaluation 
of the match for a mask of dimension ܵ௫ ൈ ܵ௬defined 
as: 

ܴሺݔ, ሻݕ ൌ   ݔሺܦ|  ,ݑ ݕ  ሻݒ െ ,ݑሺܯ |ሻݒ

ௌିଵ

௩ୀ

ௌೣିଵ

௨ୀ

 

Multi-channel template matching, e.g. in RGB 
images, can be obtained simply by adding the results 
obtained in the previous equation that was applied in 
every image channel and mask. For a ௫ܰ ൈ ௬ܰ image, 
the border band, which is usually located bounding 
the image, is moved to the right and low of the 
image. The right null band is ܵ௫ െ 1 width and low 
band is ܵ௬ െ 1 high.  In the previous Equation the 
ሺݔ, ݔ :ሻ values run in the intervalsݕ א ሾ0, ௫ܰ െ ܵ௫ 
1ሿ and ݕ א ሾ0, ௬ܰ െ ܵ௬  1ሿ. Usually, the border 
band is set to null value, but to avoid any problem 
with the minimum computation we decide to set it to 
the highest numeric positive value in its internal 
representation. After the local detection of the 
minimum matching value, its location must be offset 
by ሺܵ_2/ݔ,  2ሻ. Template matching in 2D has/ݕ_ܵ
advantages related to the data alignment, and it also 
can be computed by row 1D oriented matching: 

ܴሺݔ, ሻݕ ൌ   ݔ௬ା௩ሺܦ|  ሻݑ െ |ሻݑ௩ሺܯ

ௌିଵ
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ௌೣିଵ
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That can be computed by using the following general 
1D template matching: 

ሻݔሺܤ ൌ  ݔሺܣ|  ሻݑ െ |ሻݑሺܥ

ௌିଵ
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The use of Region of Interest (ROI) reduces 
significantly the computational cost because the 
template search can be reduced to a fraction of the 
image area. The ROI usage for tracking requires the 
implementation of a strategy for updating the ROI 
according to the detected trajectory by using a 

predictive filter such as the one based on Kalman or 
Particle Filters. In this paper we have computed the 
worst case, when the maximal ROI extends to the 
entire image. This option allows us to obtain an 
upper bound of the tracking computational time. 

 

The two main problems involved in the computation 
of template matching in 2D and 1D are arithmetic 
and memory access. The arithmetic is concerning to 
the computation of SAD, which is not cheap if no 
special hardware is available. Memory access is a 
less evident problem, but it is more important in 
modern computers because their performance is 
mainly related to the pattern of memory access. The 
sliding of the mask across the entire image requires 
that all the different memory alignments patterns 
must be used. The sliding ݑ value between ܤሺݔሻ and 
ݔሺܣ   ሻ is the cause of many of the lowݑ
performance issues in computer applications because 
it is very important in memory access efficiency. 

 

3. SIMD-BASED TEMPLATE 
MATCHING 
The efficient implementation of template matching in 
modern computer architectures requires a revision of 
some specialized instructions of the machine code of 
some popular microprocessors. Unfortunately, those 
instructions are not used by the compilers to translate 
the user code written in high level languages as 
C/C++ to machine code. This implies that the user 
must code the parts of the software dealing with the 
specialized instructions using assembly language or 
inline embedded assembly. In this section only some 
guidelines of the specialized instructions are shown 
with the aim of being useful for researchers and 
developers in Computer Vision. 

 

Early versions of SIMD in Intel/AMD processors 
incorporate a SAD instruction called psadbw  in the 
first SSE (Streaming SIMD Extension) release of the 
MMX (Multi Media eXtension) instruction set. It 
uses the MMX registers of 64 bits, allowing 
computing the SAD for 8 bits unsigned integer data. 
This instruction allows improving the arithmetic part 
of the array matching but does not solve the problems 
related to the sliding of the mask array across the 
data array. Multiple unaligned data read were needed 
to perform and achieve the whole matching. 

 

A recent SSE extension, that use 128 bit registers, 
has included the mpsadbw instruction [Int09a] that 
solves this problem by including in-hardware sliding 
computation, which avoids that the user must design 
a code with unaligned data load. This improvement 
introduced in SIMD release SSE4.1 allows higher 



performance, but at the time of this study, it is not 
included yet in all computer vision libraries, e.g. 
OpenCV. This instruction computes multiple and 
sliding SAD for 4 bytes masks including an 
immediate additional argument (imm8) that controls 
the selection of the group of 4 bytes defining the 
mask and also controlling the sliding option. The 
mpsadbw instruction requires three arguments: the 
source register containing 16 byte mask data, s(0-15), 
the result register that initially contains 16 byte data 
from an image row, d(0-15), and finally one byte 
register, imm8, to control the instruction mode. The 
result is obtained as 8 unsigned short array r(0-7). 

 

This instruction is extremely important for modern 
HDTV codecs, and  allows an 8x8 block difference 
to be computed in fewer than seven cycles [Kua07a], 
but also is very useful in general template matching 
of small mask on the whole image. This instruction 
implements the computation of the SAD for 4 
unsigned char integer values and the in-hardware 
computation of the sliding of the 4 bytes across the 
data register. If ݅݉݉8ሺ2ሻ ൌ ܽ א ሼ0,1ሽ and 
݅݉݉8ሺ0 െ 1ሻ ൌ ܾ א ሼ0,1,2,3ሽ, it computes for 
݅ ൌ 0,… ,7 

ሺ4ܽݎ  ݅ሻ ൌ|݀ሺ4ܽ  ݅  ݆ሻ െ ሺ4ܾݏ  ݆ሻ|
ଷ

ୀ

 

Computing the whole sliding of a mask across a data 
array will require a more complex arrangement. 
Therefore, to compute a full matching of a data array 
with a mask of suitable size multiple of 4 bytes, we 
have designed a computational arrangement, which is 
shown in Figure 1, as an useful chart that allows an 
easy implementation for Computer Vision developers 
and researchers. In this chart, Data and Result are the 
arrays involved in a general 1D matching. The first 
array is 8 bits unsigned integer and the second array 
16 bits unsigned integers, also it is used the 8 bit 
unsigned int Mask array, whose length is multiple of 
4. In Intel architecture the SSE instructions for 
loading and storing data are penalized if the memory 
reference is not aligned to 16 bytes. The goal of the 
arrangement shown in the Figure 1 is the 
computation of Result(0-7) and Result(8-15) for 

different mask sizes. Data are read from memory in 
16 bytes block such as the CPU can read Data(0-15) 
and Data(16-31). However, it can be read Data(8-23) 
in unaligned way by incurring in efficiency penalties. 
To avoid that, it can be obtained Data(8-23) by using 
register instructions from the aligned Data(0-15) and 
Data(16-31), which can be read without penalties. 
Data contained in the first row are directly read and 
the contained in the second row are obtained from the 
previous by using register operations. 

 

Column containing Result(0-7) defines the 
intermediate results that must be added to get the 
result and from which they are obtained. For 
instance, to compute Result(0-7) by using the smaller 
mask of 4, we must compute by using  the imm8 
value of 000 in the Data(0-15) according to the 
description of the instruction. When we want the 
same result but for a mask size of 8, we must obtain 
the previous result (using 000 in Data(0-15)) and add 
this to the intermediate result by using 010 applied to 
Data(8-23). For each row related to a mask size, 
intermediate results are organized form right to left 
and successively computed from Data(0-15), Data(8-
23), Data(16-31), Data(24-39) and Data(32-47). Each 
cell in the sub-rows corresponds to each mask size 
when it is computed by using the defined {imm8} 
datum. Although the arrangement can be extended to 
bigger masks of size 4 ൈ ܰ, we only have included 
the cases from 4 to 32. 

 

4. TEMPLATE MATCHING IN GPU 
A GPU has many processors or cores that can be 
suitably arranged to fit better for a specific problem. 
The advantage of GPUs is the massive number of 
cores, e.g. 2x240 in a NVIDIA GTX 295, but its 
drawback is the access to memory of such big 
number of cores.  The memory is organized in 
different types: global, constant, texture and shared, 
but each type is accessed by using a single port, 
therefore the serial part and the bottleneck of the 
algorithms programmed in GPU is the memory 
access.  According the Amdahl's law this is the factor 
that limits the efficiency of this massive parallel 
system. 



The main decision in the GPU programming is the 
design criterion of how memory will be used. We 
have decided to place the mask data in constant 
memory and the image and the result data in global 
memory. The image is constant in the algorithm but 
it does not fit in the small constant memory of the 
GPU. The CUDA programming methodology 
[Nvi09a] allows arranging the processors as a grid of 
threads. In our problem, the grid of threads is 
configured by assigning a thread to each result pixel 
at ሺݔ,  ሻ excluding the border band; that is, eachݕ
thread is involved in the computation of a ܴሺݔ,  ሻݕ
result. To reduce the negative effects of memory 
access, the mask data are placed in constant memory 
because this type of memory is cached and is smaller 
in size than the mask data. Also, we take advantage 
of broadcast access to that memory type because for 
ሺݑ,  ሻ values of the mask indexes all the threadsݒ
access to the same ܯሺݑ,  ሻ, which takes advantage ofݒ
the broadcast access to constant memory. 

 

In the developed code, the access to global memory 
is coalescent but unaligned due to the sliding. This 
would require the access to two consecutive data 
block in the same half ward, depending on the sliding 
value of ݒ. To avoid the decreasing in performance 
of unaligned access, NVIDIA documentation 
[Nvi09a] suggests the use of texture memory instead 
of global memory, but we have not experimented any 
increasing in the performance when allocating the 
image data in texture memory and the mask in 
constant memory. At this point, the provided results 
are the related to the data ࡰ being placed in global 
memory, with coalescent but unaligned access, and 
the mask ࡹ being in constant memory with cached 
and broadcast access. To achieve the computation of 

the SAD, the unsigned integer version of the CUDA 
function sad(a,b,c) was used, where a becomes the 
value of the sliding image in global memory, b the 
value of the mask in constant memory and c the 
value of the serialized computation of the result. 

 

To increase the efficiency in GPU, streamed calls to 
memory transfer and kernel launches have been used 
by splitting the image in several areas, non 
overlapping in result data and overlapping in image 
data. The interleaving between data transfer and 
kernel computation allows hiding the time used in 
data transfer between device and host. For this 
streamed asynchronous data transfer, the optional 
pinned memory allocation was used. The last 
included improvement is the use of this methodology 
to feed data and kernel launches in the two GPU 
contained in the same graphic card. 

 

5. RESULTS 
To test the implementations of raw template 
matching, images of 640 ൈ 480 pixel have been 
used. Mask sizes range from 4 ൈ 4 to 32 ൈ 32. Both 
image and mask are single-channel with a pixel data 
of 8 bit unsigned int. The test computer is a Core2 
Quad Q8300 with 4 GB of RAM memory and one 
NVIDIA GTX 295 graphic card. The Operating 
System is Windows XP and the code has been 
written in C++ in Visual Studio. Computational times 
are obtained by using performance counters of 
Windows, the reported values are the average on one 
hundred runs. Table 1 contains the results for four 
different implementations. The first one is C plain 
with low performance, but that is used as the baseline 
to provide the speedup for higher performance 

Figure 1. Computational arrangement for fast pattern matching. Data 
inboxes is the imm8 value 



implementations. The second implementation uses 
SIMD instruction in the 1D matching in which is 
based in the 2D. Also, for these two implementations 
the use of multiple cores is included by using 
OpenMP [Cha08a] parallelism. The 2D matching is 
implemented by row oriented 1D matching primitive, 
an omp parallel for directive of OpenMP is used for 
the row loop. The static schedule strategy is used, so 
the computation of rows is assigned to each core at 
the thread forking. Four threads are used for this four 
core system. The speedup (Column Sp) reported is 
the SIMD implementation with OpenMP in relation 
to the serial C plain one. Core based parallelism is 
more effective when 32 ൈ 32 mask is used because 
the latencies of the threads forking are less relevant 
in bigger tasks than in the lowest associated to the 
small 4 ൈ 4 mask due to the effectiveness of threads 
level parallelism is greatly dependent on the 
computational grain size. A remarkable speedup 
value of 184 is achieved for 16 ൈ 16 mask when the 
four core of the system are used and also their high 
specialized SIMD vector units. 

 

Table 1. Time in msec. for Template Matching in 
640x480 images. C plain (Cp), SIMD and Speedup 

(Sp) for the 4 Cores case are included. 

 

Table 2 contains the results for the implementations 
using one GPU. It contains the host to device (HtoD) 
data transfer, that in this case means, the transfer of 
mask from host memory to constant memory and the 
image transfer to global memory. This table also 
includes the kernel computation and finally the 
device to host (DtoH) transfer of the result to host 
memory. The result is coded as unsigned int which is 
better for the SAD computation but increases the data 
transfer time. However, this decision is not relevant 
in bigger mask sizes. Speedup columns are related to 
the kernel part (Sp1) or the total time (Sp2) over the 
C plain simple case. Figure 2 shows the graphical 
representation of these values. In the 4 ൈ 4 case, data 
transfer is the critical subtask, while for the 32 ൈ 32 
case the kernel computation is highly more 
significant than the data transfer. 

The final test that has been carried out includes other 
computational advantages of the GPU. The first one 
is the use of the second GPU included in the GTX 
295 graphic card by means of splitting the whole 
image in two parts and by loading each part to each 
GPU. This methodology is extended by splitting the 
image in many parts and transferring each one to the 
GPUs in different threads context. This is 
implemented by thread forking in OpenMP in a 
number of threads defined by the user and using the 
cudaSetDevice function to select the device. Pinned 
memory is used to accomplish streamed 
asynchronous memory transfer and kernel launches. 
Table 3 contains the results for several mask size, 
and Figure 3 illustrate the results for 32 ൈ 32 mask 
by using synchronous and asynchronous memory 
transfer. The 2 thread case, which uses a task in each 
GPU, is the best result followed by the 4 threads, 
which includes two tasks in each CPU. The 
asynchronous case that hides part of the memory 
transfer cost is the best case, but it cannot overtake 
the SIMD implementation.  

Table 2. Results in msec. for Template Matching 
in one GPU. Speedup 1 (Sp1) is Kernel time and 
Speedup 2 (Sp2) is Total time, both related to 1 

Core C plain case. 

 

6. CONCLUSIONS 
Modern computer hardware allows the computation 
of raw template matching in few milliseconds for 
small mask sizes. The use of ROI can reduce this 
computational cost to sub milliseconds scale. This 
fact is an opportunity to revalorize the developing of 
template matching applications. The use of many 
cores or many GPUs are different options to 
consider, but nowadays, the many-core approach, 
which includes specialized vector SIMD instructions, 
is more computational efficient because it is high 
specialized in SAD arithmetic and in-hardware 
sliding of mask across data array. 

 

Technological improvements are in the line of 
increasing the number of cores in host. This trend is 
not well suited for small masks because they do not 
use effectively the OpenMP parallelism, but in bigger 
masks they can greatly increase the performance of 

 1 Core/ 1 Thread 4 Cores / 4 Threads 

Mask Cp SIMD Cp SIMD Sp 

4x4 11.1 0.7 2.7 0.6 18.5 

8x8 33.1 0.8 8.8 0.2 165.5 

12x12 66.4 2.4 27.2 0.9 73.8 

16x16 110.6 3.4 29.0 0.6 184.3 

24x24 231.3 6.5 60.0 1.3 177.9 

32x32 388.6 10.5 101.0 2.3 168.9 

Mask HtoD Kernel DtoH Total Sp1 Sp2 

4x4 0.4 0.3 1.0 1.7 37 6 

8x8 0.4 0.7 1.0 2.1 47 16 

12x12 0.4 1.5 1.0 2.9 44 23 

16x16 0.4 2.7 1.0 4.1 41 27 

24x24 0.4 5.8 1.0 7.2 40 32 

32x32 0.4 10.1 1.0 11.5 38 34 



template matching procedures. The evolution of GPU 
architectures, e.g. the new NVIDIA Fermi 
architecture, will introduce full global memory 
cached access that can improve the kernel part of the 
GPU procedure as well as an increase in the number 
of involves cores. However, this can be improved 
only in the performance of big mask sizes whereas in 
smaller ones it will depend on the increase of the 
bandwidth of memory transfer between the host and 
the graphic card. 

 4x4 16x16 32x32 

Th S A S A S A 

1 2.6 2.3 5.1 4.7 12.5 12.1 

2 2.4 2.1 3.7 3.3 7.4 7.1 

3 5.8 3.6 7.5 5.1 12.6 10.4 

4 5.9 3.7 7.3 4.8 11.1 8.7 

5 6.2 4.7 9.3 6.0 14.0 10.7 

6 6.4 5.0 7.8 6.0 13.8 10.3 

7 7.8 5.9 9.5 7.3 14.2 12.0 

8 7.9 6.2 9.4 7.3 13.7 11.3 

 

Table 3. Results in msec. for 2 GPUs and OpenMP 
using different  threads number (Th) from 1 to 8. 
The Sync (S) and Async (A) cases are included for 

several mask sizes. 
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Figure 2. Kernel and Data transfer in GPU, 
memory copy from host to device (HtoD), device 
to host (DtoH) and kenel matching 

  

 
Figure 3. Total time for 2 GPUs and 32x32 mask 
matching. Asynchronous memory transfer was 
used with interleave between data transfer and 
kernel launches. 


